Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling.

Identifieur interne : 000003 ( Main/Exploration ); précédent : 000002; suivant : 000004

Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling.

Auteurs : Jianbei Huang [Allemagne] ; Markus Kautz [Allemagne] ; Amy M. Trowbridge [États-Unis] ; Almuth Hammerbacher [Allemagne, Afrique du Sud] ; Kenneth F. Raffa [États-Unis] ; Henry D. Adams [États-Unis] ; Devin W. Goodsman [Canada] ; Chonggang Xu [États-Unis] ; Arjan J H. Meddens [États-Unis] ; Dineshkumar Kandasamy [Allemagne] ; Jonathan Gershenzon [Allemagne] ; Rupert Seidl [Autriche] ; Henrik Hartmann [Allemagne]

Source :

RBID : pubmed:31494935

Abstract

Drought has promoted large-scale, insect-induced tree mortality in recent years, with severe consequences for ecosystem function, atmospheric processes, sustainable resources and global biogeochemical cycles. However, the physiological linkages among drought, tree defences, and insect outbreaks are still uncertain, hindering our ability to accurately predict tree mortality under on-going climate change. Here we propose an interdisciplinary research agenda for addressing these crucial knowledge gaps. Our framework includes field manipulations, laboratory experiments, and modelling of insect and vegetation dynamics, and focuses on how drought affects interactions between conifer trees and bark beetles. We build upon existing theory and examine several key assumptions: (1) there is a trade-off in tree carbon investment between primary and secondary metabolites (e.g. growth vs defence); (2) secondary metabolites are one of the main component of tree defence against bark beetles and associated microbes; and (3) implementing conifer-bark beetle interactions in current models improves predictions of forest disturbance in a changing climate. Our framework provides guidance for addressing a major shortcoming in current implementations of large-scale vegetation models, the under-representation of insect-induced tree mortality.

DOI: 10.1111/nph.16173
PubMed: 31494935


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling.</title>
<author>
<name sortKey="Huang, Jianbei" sort="Huang, Jianbei" uniqKey="Huang J" first="Jianbei" last="Huang">Jianbei Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kautz, Markus" sort="Kautz, Markus" uniqKey="Kautz M" first="Markus" last="Kautz">Markus Kautz</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Forest Health, Forest Research Institute Baden-Württemberg, 79100, Freiburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Forest Health, Forest Research Institute Baden-Württemberg, 79100, Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Trowbridge, Amy M" sort="Trowbridge, Amy M" uniqKey="Trowbridge A" first="Amy M" last="Trowbridge">Amy M. Trowbridge</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Bozeman, MT, 59717-3120, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Bozeman, MT, 59717-3120</wicri:regionArea>
<wicri:noRegion>59717-3120</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hammerbacher, Almuth" sort="Hammerbacher, Almuth" uniqKey="Hammerbacher A" first="Almuth" last="Hammerbacher">Almuth Hammerbacher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, 0028, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, 0028, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Raffa, Kenneth F" sort="Raffa, Kenneth F" uniqKey="Raffa K" first="Kenneth F" last="Raffa">Kenneth F. Raffa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Adams, Henry D" sort="Adams, Henry D" uniqKey="Adams H" first="Henry D" last="Adams">Henry D. Adams</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078</wicri:regionArea>
<wicri:noRegion>74078</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Goodsman, Devin W" sort="Goodsman, Devin W" uniqKey="Goodsman D" first="Devin W" last="Goodsman">Devin W. Goodsman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Canadian Forest Service, Natural Resources Canada, Victoria, BC, V8Z 1M5, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Canadian Forest Service, Natural Resources Canada, Victoria, BC, V8Z 1M5</wicri:regionArea>
<wicri:noRegion>V8Z 1M5</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Chonggang" sort="Xu, Chonggang" uniqKey="Xu C" first="Chonggang" last="Xu">Chonggang Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Los Alamos National Laboratory, Los Alamos, NM, 87545</wicri:regionArea>
<wicri:noRegion>87545</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meddens, Arjan J H" sort="Meddens, Arjan J H" uniqKey="Meddens A" first="Arjan J H" last="Meddens">Arjan J H. Meddens</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of the Environment, Washington State University, Pullman, WA, 99164-2812, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of the Environment, Washington State University, Pullman, WA, 99164-2812</wicri:regionArea>
<wicri:noRegion>99164-2812</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kandasamy, Dineshkumar" sort="Kandasamy, Dineshkumar" uniqKey="Kandasamy D" first="Dineshkumar" last="Kandasamy">Dineshkumar Kandasamy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seidl, Rupert" sort="Seidl, Rupert" uniqKey="Seidl R" first="Rupert" last="Seidl">Rupert Seidl</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Silviculture, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences, 1190, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Institute of Silviculture, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences, 1190, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hartmann, Henrik" sort="Hartmann, Henrik" uniqKey="Hartmann H" first="Henrik" last="Hartmann">Henrik Hartmann</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31494935</idno>
<idno type="pmid">31494935</idno>
<idno type="doi">10.1111/nph.16173</idno>
<idno type="wicri:Area/Main/Corpus">000057</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000057</idno>
<idno type="wicri:Area/Main/Curation">000057</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000057</idno>
<idno type="wicri:Area/Main/Exploration">000057</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling.</title>
<author>
<name sortKey="Huang, Jianbei" sort="Huang, Jianbei" uniqKey="Huang J" first="Jianbei" last="Huang">Jianbei Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kautz, Markus" sort="Kautz, Markus" uniqKey="Kautz M" first="Markus" last="Kautz">Markus Kautz</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Forest Health, Forest Research Institute Baden-Württemberg, 79100, Freiburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Forest Health, Forest Research Institute Baden-Württemberg, 79100, Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Trowbridge, Amy M" sort="Trowbridge, Amy M" uniqKey="Trowbridge A" first="Amy M" last="Trowbridge">Amy M. Trowbridge</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Bozeman, MT, 59717-3120, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Bozeman, MT, 59717-3120</wicri:regionArea>
<wicri:noRegion>59717-3120</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hammerbacher, Almuth" sort="Hammerbacher, Almuth" uniqKey="Hammerbacher A" first="Almuth" last="Hammerbacher">Almuth Hammerbacher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, 0028, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, 0028, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Raffa, Kenneth F" sort="Raffa, Kenneth F" uniqKey="Raffa K" first="Kenneth F" last="Raffa">Kenneth F. Raffa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Adams, Henry D" sort="Adams, Henry D" uniqKey="Adams H" first="Henry D" last="Adams">Henry D. Adams</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078</wicri:regionArea>
<wicri:noRegion>74078</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Goodsman, Devin W" sort="Goodsman, Devin W" uniqKey="Goodsman D" first="Devin W" last="Goodsman">Devin W. Goodsman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Canadian Forest Service, Natural Resources Canada, Victoria, BC, V8Z 1M5, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Canadian Forest Service, Natural Resources Canada, Victoria, BC, V8Z 1M5</wicri:regionArea>
<wicri:noRegion>V8Z 1M5</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Chonggang" sort="Xu, Chonggang" uniqKey="Xu C" first="Chonggang" last="Xu">Chonggang Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Los Alamos National Laboratory, Los Alamos, NM, 87545</wicri:regionArea>
<wicri:noRegion>87545</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meddens, Arjan J H" sort="Meddens, Arjan J H" uniqKey="Meddens A" first="Arjan J H" last="Meddens">Arjan J H. Meddens</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of the Environment, Washington State University, Pullman, WA, 99164-2812, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of the Environment, Washington State University, Pullman, WA, 99164-2812</wicri:regionArea>
<wicri:noRegion>99164-2812</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kandasamy, Dineshkumar" sort="Kandasamy, Dineshkumar" uniqKey="Kandasamy D" first="Dineshkumar" last="Kandasamy">Dineshkumar Kandasamy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seidl, Rupert" sort="Seidl, Rupert" uniqKey="Seidl R" first="Rupert" last="Seidl">Rupert Seidl</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Silviculture, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences, 1190, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Institute of Silviculture, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences, 1190, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hartmann, Henrik" sort="Hartmann, Henrik" uniqKey="Hartmann H" first="Henrik" last="Hartmann">Henrik Hartmann</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Drought has promoted large-scale, insect-induced tree mortality in recent years, with severe consequences for ecosystem function, atmospheric processes, sustainable resources and global biogeochemical cycles. However, the physiological linkages among drought, tree defences, and insect outbreaks are still uncertain, hindering our ability to accurately predict tree mortality under on-going climate change. Here we propose an interdisciplinary research agenda for addressing these crucial knowledge gaps. Our framework includes field manipulations, laboratory experiments, and modelling of insect and vegetation dynamics, and focuses on how drought affects interactions between conifer trees and bark beetles. We build upon existing theory and examine several key assumptions: (1) there is a trade-off in tree carbon investment between primary and secondary metabolites (e.g. growth vs defence); (2) secondary metabolites are one of the main component of tree defence against bark beetles and associated microbes; and (3) implementing conifer-bark beetle interactions in current models improves predictions of forest disturbance in a changing climate. Our framework provides guidance for addressing a major shortcoming in current implementations of large-scale vegetation models, the under-representation of insect-induced tree mortality.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31494935</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>225</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>01</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling.</ArticleTitle>
<Pagination>
<MedlinePgn>26-36</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16173</ELocationID>
<Abstract>
<AbstractText>Drought has promoted large-scale, insect-induced tree mortality in recent years, with severe consequences for ecosystem function, atmospheric processes, sustainable resources and global biogeochemical cycles. However, the physiological linkages among drought, tree defences, and insect outbreaks are still uncertain, hindering our ability to accurately predict tree mortality under on-going climate change. Here we propose an interdisciplinary research agenda for addressing these crucial knowledge gaps. Our framework includes field manipulations, laboratory experiments, and modelling of insect and vegetation dynamics, and focuses on how drought affects interactions between conifer trees and bark beetles. We build upon existing theory and examine several key assumptions: (1) there is a trade-off in tree carbon investment between primary and secondary metabolites (e.g. growth vs defence); (2) secondary metabolites are one of the main component of tree defence against bark beetles and associated microbes; and (3) implementing conifer-bark beetle interactions in current models improves predictions of forest disturbance in a changing climate. Our framework provides guidance for addressing a major shortcoming in current implementations of large-scale vegetation models, the under-representation of insect-induced tree mortality.</AbstractText>
<CopyrightInformation>© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Jianbei</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0001-5286-5645</Identifier>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kautz</LastName>
<ForeName>Markus</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0001-8763-3262</Identifier>
<AffiliationInfo>
<Affiliation>Department of Forest Health, Forest Research Institute Baden-Württemberg, 79100, Freiburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Trowbridge</LastName>
<ForeName>Amy M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Bozeman, MT, 59717-3120, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin, Madison, WI, 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hammerbacher</LastName>
<ForeName>Almuth</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0002-0262-2634</Identifier>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, 0028, Pretoria, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Raffa</LastName>
<ForeName>Kenneth F</ForeName>
<Initials>KF</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin, Madison, WI, 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Adams</LastName>
<ForeName>Henry D</ForeName>
<Initials>HD</Initials>
<Identifier Source="ORCID">0000-0001-9630-4305</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goodsman</LastName>
<ForeName>Devin W</ForeName>
<Initials>DW</Initials>
<AffiliationInfo>
<Affiliation>Canadian Forest Service, Natural Resources Canada, Victoria, BC, V8Z 1M5, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Chonggang</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0002-0937-5744</Identifier>
<AffiliationInfo>
<Affiliation>Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meddens</LastName>
<ForeName>Arjan J H</ForeName>
<Initials>AJH</Initials>
<AffiliationInfo>
<Affiliation>School of the Environment, Washington State University, Pullman, WA, 99164-2812, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kandasamy</LastName>
<ForeName>Dineshkumar</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gershenzon</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0002-1812-1551</Identifier>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Seidl</LastName>
<ForeName>Rupert</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">0000-0002-3338-3402</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Silviculture, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences, 1190, Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hartmann</LastName>
<ForeName>Henrik</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">0000-0002-9926-5484</Identifier>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">bark beetles</Keyword>
<Keyword MajorTopicYN="Y">carbon allocation</Keyword>
<Keyword MajorTopicYN="Y">climate changes</Keyword>
<Keyword MajorTopicYN="Y">insects and pathogens</Keyword>
<Keyword MajorTopicYN="Y">nonstructural carbohydrate storage</Keyword>
<Keyword MajorTopicYN="Y">secondary metabolites</Keyword>
<Keyword MajorTopicYN="Y">tree mortality</Keyword>
<Keyword MajorTopicYN="Y">vegetation models</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>02</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>08</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31494935</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16173</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD et al. 2017. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology & Evolution 1: 1285-1291.</Citation>
</Reference>
<Reference>
<Citation>Allen CD, Breshears DD, McDowell NG. 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6: 129.</Citation>
</Reference>
<Reference>
<Citation>Amin HS, Russo RS, Sive B, Richard Hoebeke E, Dodson C, McCubbin IB, Gannet Hallar A, Huff Hartz KE. 2013. Monoterpene emissions from bark beetle infested Engelmann spruce trees. Atmospheric Environment 72: 130-133.</Citation>
</Reference>
<Reference>
<Citation>Anderegg WRL, Hicke JA, Fisher RA, Allen CD, Aukema J, Bentz B, Hood S, Lichstein JW, Macalady AK, McDowell N et al. 2015. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist 208: 674-683.</Citation>
</Reference>
<Reference>
<Citation>Anderegg WRL, Kane JM, Anderegg LDL. 2012. Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change 3: 30-36.</Citation>
</Reference>
<Reference>
<Citation>Arango-Velez A, Chakraborty S, Blascyk K, Phan MT, Barsky J, El Kayal W. 2018. Anatomical and chemical responses of eastern white pine (Pinus strobus L.) to blue-stain (Ophiostoma minus) inoculation. Forests 9: 690.</Citation>
</Reference>
<Reference>
<Citation>Berryman AA, Raffa KF, Millstein JA, Nils Chr S. 1989. Interaction dynamics of bark beetle aggregation and conifer defense rates. Oikos 56: 256-263.</Citation>
</Reference>
<Reference>
<Citation>Björkman C, Kytö M, Larsson S, Niemelä P. 1998. Different responses of two carbon-based defences in Scots pine needles to nitrogen fertilization. Ecoscience 5: 502-507.</Citation>
</Reference>
<Reference>
<Citation>Blomquist GJ, Figueroa-Teran R, Aw M, Song M, Gorzalski A, Abbott NL, Chang E, Tittiger C. 2010. Pheromone production in bark beetles. Insect Biochemistry and Molecular Biology 40: 699-712.</Citation>
</Reference>
<Reference>
<Citation>Boone CK, Aukema BH, Bohlmann J, Carroll AL, Raffa KF. 2011. Efficacy of tree defense physiology varies with bark beetle population density: a basis for positive feedback in eruptive species. Canadian Journal of Forest Research 41: 1174-1188.</Citation>
</Reference>
<Reference>
<Citation>Boone CK, Keefover-Ring K, Mapes AC, Adams AS, Bohlmann J, Raffa KF. 2013. Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. Journal of Chemical Ecology 39: 1003-1006.</Citation>
</Reference>
<Reference>
<Citation>Bugmann H, Seidl R, Hartig F, Bohn F, Brůna J, Cailleret M, François L, Heinke J, Henrot A-J, Hickler T et al. 2019. Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale. Ecosphere 10: e02616.</Citation>
</Reference>
<Reference>
<Citation>Burnell DG. 1977. A dispersal-aggregation model for mountain pine beetle in lodgepole pine stands. Researches on Population Ecology 19: 99-106.</Citation>
</Reference>
<Reference>
<Citation>Chiu CC, Keeling CI, Bohlmann J. 2017. Toxicity of pine monoterpenes to mountain pine beetle. Scientific Reports 7: 8858.</Citation>
</Reference>
<Reference>
<Citation>Chiu CC, Keeling CI, Bohlmann J. 2018. Monoterpenyl esters in Juvenile Mountain pine beetle and sex-specific release of the aggregation pheromone trans-verbenol. Proceedings of the National Academy of Sciences, USA 115: 3652-3657.</Citation>
</Reference>
<Reference>
<Citation>Denham SO, Coyle DR, Oishi AC, Bullock BP, Heliövaara K, Novick KA. 2019. Tree resin flow dynamics during an experimentally induced attack by Ips avulsus, I. calligraphus, and I. grandicollis. Canadian Journal of Forest Research 49: 53-63.</Citation>
</Reference>
<Reference>
<Citation>Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R. 2014. Nonstructural carbon in woody plants. Annual Review of Plant Biology 65: 667-687.</Citation>
</Reference>
<Reference>
<Citation>Erbilgin N. 2019. Phytochemicals as mediators for host range expansion of a native invasive forest insect herbivore. New Phytologist 221: 1268-1278.</Citation>
</Reference>
<Reference>
<Citation>Erbilgin N, Cale JA, Hussain A, Ishangulyyeva G, Klutsch JG, Najar A, Zhao S. 2017. Weathering the storm: how lodgepole pine trees survive mountain pine beetle outbreaks. Oecologia 184: 469-478.</Citation>
</Reference>
<Reference>
<Citation>Erbilgin N, Krokene P, Christiansen E, Zeneli G, Gershenzon J. 2006. Exogenous application of methyl jasmonate elicits defenses in Norway spruce (Picea abies) and reduces host colonization by the bark beetle Ips typographus. Oecologia 148: 426-436.</Citation>
</Reference>
<Reference>
<Citation>Ferrenberg S, Kane JM, Mitton JB. 2014. Resin duct characteristics associated with tree resistance to bark beetles across lodgepole and limber pines. Oecologia 174: 1283-1292.</Citation>
</Reference>
<Reference>
<Citation>Fisher RA, Muszala S, Verteinstein M, Lawrence P, Xu C, McDowell NG, Knox RG, Koven C, Holm J, Rogers BM et al. 2015. Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED). Geoscientific Model Development 8: 3593-3619.</Citation>
</Reference>
<Reference>
<Citation>Franceschi VR, Krokene P, Christiansen E, Krekling T. 2005. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytologist 167: 353-376.</Citation>
</Reference>
<Reference>
<Citation>Gaylord ML, Kolb TE, Pockman WT, Plaut JA, Yepez EA, Macalady AK, Pangle RE, McDowell NG. 2013. Drought predisposes piñon-juniper woodlands to insect attacks and mortality. New Phytologist 198: 567-578.</Citation>
</Reference>
<Reference>
<Citation>Ghimire RP, Kivimäenpää M, Blomqvist M, Holopainen T, Lyytikäinen-Saarenmaa P, Holopainen JK. 2016. Effect of bark beetle (Ips typographus L.) attack on bark VOC emissions of Norway spruce (Picea abies Karst.) trees. Atmospheric Environment 126: 145-152.</Citation>
</Reference>
<Reference>
<Citation>Goodsman DW, Aukema BH, McDowell NG, Middleton RS, Xu C. 2018. Incorporating variability in simulations of seasonally forced phenology using integral projection models. Ecology and Evolution 8: 162-175.</Citation>
</Reference>
<Reference>
<Citation>Goodsman DW, Lusebrink I, Landhäusser SM, Erbilgin N, Lieffers VJ. 2013. Variation in carbon availability, defense chemistry and susceptibility to fungal invasion along the stems of mature trees. New Phytologist 197: 586-594.</Citation>
</Reference>
<Reference>
<Citation>Hammerbacher A, Kandasamy D, Ullah C, Schmidt A, Wright LP, Gershenzon J. 2019. Flavanone-3-Hydroxylase plays an important role in the biosynthesis of spruce phenolic defenses against bark beetles and their fungal associates. Frontiers in Plant Science 10: 208.</Citation>
</Reference>
<Reference>
<Citation>Herms DA, Mattson WJ. 1992. The dilemma of plants: to grow or defend. Quarterly Review of Biology 67: 283-335.</Citation>
</Reference>
<Reference>
<Citation>Hicke JA, Meddens AJH, Kolden CA. 2015. Recent tree mortality in the Western United States from bark beetles and forest fires. Forest Science 62: 141-153.</Citation>
</Reference>
<Reference>
<Citation>Holopainen JK, Virjamo V, Ghimire RP, Blande JD, Julkunen-Tiitto R, Kivimäenpää M. 2018. Climate change effects on secondary compounds of forest trees in the Northern Hemisphere. Frontiers in Plant Science 9: 1445.</Citation>
</Reference>
<Reference>
<Citation>Honkaniemi J, Ojansuu R, Kasanen R, Heliövaara K. 2018. Interaction of disturbance agents on Norway spruce: a mechanistic model of bark beetle dynamics integrated in simulation framework WINDROT. Ecological Modelling 388: 45-60.</Citation>
</Reference>
<Reference>
<Citation>Hoover DL, Wilcox KR, Young KE. 2018. Experimental droughts with rainout shelters: a methodological review. Ecosphere 9: e02088.</Citation>
</Reference>
<Reference>
<Citation>Huang J, Hammerbacher A, Weinhold A, Reichelt M, Gleixner G, Behrendt T, van Dam NM, Sala A, Gershenzon J, Trumbore S et al. 2019. Eyes on the future - evidence for trade-offs between growth, storage and defense in Norway spruce. New Phytologist 222: 144-158.</Citation>
</Reference>
<Reference>
<Citation>Huang J, Hartmann H, Hellén H, Wisthaler A, Perreca E, Weinhold A, Rücker A, van Dam NM, Gershenzon J, Trumbore SE et al. 2018. New perspectives on CO2, temperature and light effects on BVOC emissions using online measurements by PTR-MS and cavity ring-down spectroscopy. Environmental Science & Technology 52: 13811-13823.</Citation>
</Reference>
<Reference>
<Citation>Jamieson MA, Burkle LA, Manson JS, Runyon JB, Trowbridge AM, Zientek J. 2017. Global change effects on plant-insect interactions: the role of phytochemistry. Current Opinion in Insect Science 23: 70-80.</Citation>
</Reference>
<Reference>
<Citation>Jamieson MA, Trowbridge AM, Raffa KF, Lindroth RL. 2012. Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiology 160: 1719-1727.</Citation>
</Reference>
<Reference>
<Citation>Jönsson AM, Schroeder LM, Lagergren F, Anderbrant O, Smith B. 2012. Guess the impact of Ips typographus-An ecosystem modelling approach for simulating spruce bark beetle outbreaks. Agricultural and Forest Meteorology 166: 188-200.</Citation>
</Reference>
<Reference>
<Citation>Joseph G, Kelsey RG, Peck RW, Niwa CG. 2001. Response of some scolytids and their predators to ethanol and 4-allylanisole in pine forests of central Oregon. Journal of Chemical Ecology 27: 697-715.</Citation>
</Reference>
<Reference>
<Citation>Kandasamy D, Gershenzon J, Andersson MN, Hammerbacher A. 2019. Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (Ips typographus) with its fungal symbionts. ISME Journal 13: 1788-1800.</Citation>
</Reference>
<Reference>
<Citation>Kautz M, Meddens AJH, Hall RJ, Arneth A. 2017. Biotic disturbances in Northern Hemisphere forests - a synthesis of recent data, uncertainties and implications for forest monitoring and modelling. Global Ecology and Biogeography 26: 533-552.</Citation>
</Reference>
<Reference>
<Citation>Kautz M, Schopf R, Imron MA. 2014. Individual traits as drivers of spatial dispersal and infestation patterns in a host-bark beetle system. Ecological Modelling 273: 264-276.</Citation>
</Reference>
<Reference>
<Citation>Kessler A. 2015. The information landscape of plant constitutive and induced secondary metabolite production. Current Opinion in Insect Science 8: 47-53.</Citation>
</Reference>
<Reference>
<Citation>Klutsch JG, Erbilgin N. 2018. Dwarf mistletoe infection in jack pine alters growth-defense relationships. Tree Physiology 38: 1538-1547.</Citation>
</Reference>
<Reference>
<Citation>Koricheva J, Larsson S, Haukioja E, Keinanen M. 1998. Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. Oikos 83: 212-226.</Citation>
</Reference>
<Reference>
<Citation>Landhausser SM, Chow PS, Dickman LT, Furze ME, Kuhlman I, Schmid S, Wiesenbauer J, Wild B, Gleixner G, Hartmann H et al. 2018. Standardized protocols and procedures can precisely and accurately quantify non-structural carbohydrates. Tree Physiology 38: 1764-1778.</Citation>
</Reference>
<Reference>
<Citation>Landry JS, Price DT, Ramankutty N, Parrott L, Matthews HD. 2016. Implementation of a Marauding Insect Module (MIM, version 1.0) in the Integrated BIosphere Simulator (IBIS, version 2.6b4) dynamic vegetation-land surface model. Geoscientific Model Development 9: 1243-1261.</Citation>
</Reference>
<Reference>
<Citation>Le Roux X, Lacointe A, Escobar-Gutiérrez A, Le Dizès S. 2001. Carbon-based models of individual tree growth: a critical appraisal. Annals of Forest Science 58: 469-506.</Citation>
</Reference>
<Reference>
<Citation>Li W, Hartmann H, Adams HD, Zhang H, Jin C, Zhao C, Guan D, Wang A, Yuan F, Wu J. 2018. The sweet side of global change-dynamic responses of non-structural carbohydrates to drought, elevated CO2 and nitrogen fertilization in tree species. Tree Physiology 38: 1706-1723.</Citation>
</Reference>
<Reference>
<Citation>McDowell NG, Fisher RA, Xu C, Domec JC, Hölttä T, Mackay DS, Sperry JS, Boutz A, Dickman L, Gehres N et al. 2013. Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytologist 200: 304-321.</Citation>
</Reference>
<Reference>
<Citation>Meddens AJH, Hicke JA, Ferguson CA. 2012. Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States. Ecological Applications 22: 1876-1891.</Citation>
</Reference>
<Reference>
<Citation>Meddens AJH, Hicke JA, Macalady AK, Buotte PC, Cowles TR, Allen CD. 2015. Patterns and causes of observed piñon pine mortality in the southwestern United States. New Phytologist 206: 91-97.</Citation>
</Reference>
<Reference>
<Citation>Mithöfer A, Boland W. 2012. Plant defense against herbivores: chemical aspects. Annual Review of Plant Biology 63: 431-450.</Citation>
</Reference>
<Reference>
<Citation>Mooney HA. 1972. The carbon balance of plants. Annual Review of Ecology and Systematics 3: 315-346.</Citation>
</Reference>
<Reference>
<Citation>Netherer S, Matthews B, Katzensteiner K, Blackwell E, Henschke P, Hietz P, Pennerstorfer J, Rosner S, Kikuta S, Schume H et al. 2015. Do water-limiting conditions predispose Norway spruce to bark beetle attack? New Phytologist 205: 1128-1141.</Citation>
</Reference>
<Reference>
<Citation>Oliva J, Stenlid J, Martinez-Vilalta J. 2014. The effect of fungal pathogens on the water and carbon economy of trees: implications for drought-induced mortality. New Phytologist 203: 1028-1035.</Citation>
</Reference>
<Reference>
<Citation>Raffa KF. 2014. Terpenes tell different tales at different scales: glimpses into the Chemical Ecology of conifer - bark beetle - microbial interactions. Journal of Chemical Ecology 40: 1-20.</Citation>
</Reference>
<Reference>
<Citation>Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH. 2008. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. BioScience 58: 501-517.</Citation>
</Reference>
<Reference>
<Citation>Raffa KF, Aukema B, Erbilgin N, Klepzig K, Wallin K. 2005. Interactions among conifer terpenoids and bark beetles across multiple levels of scale: an attempt to understand links between population patterns and physiological processes. In: Romeo JT, ed. Recent advances in phytochemistry. Toronto, Canada: Elsevier, 79-118.</Citation>
</Reference>
<Reference>
<Citation>Raffa KF, Mason CJ, Bonello P, Cook S, Erbilgin N, Keefover-Ring K, Klutsch JG, Villari C, Townsend PA. 2017. Defence syndromes in lodgepole - whitebark pine ecosystems relate to degree of historical exposure to mountain pine beetles. Plant, Cell & Environment 40: 1791-1806.</Citation>
</Reference>
<Reference>
<Citation>Raffa KF, Phillips TW, Salom SM. 1993. Strategies and mechanisms of host colonization by bark beetles. In: Schowalter TD, Filip GM, eds. Beetle-pathogen interactions in conifer forests. London, UK: Academic Press, 103-128.</Citation>
</Reference>
<Reference>
<Citation>Robinson EA, Ryan GD, Newman JA. 2012. A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytologist 194: 321-336.</Citation>
</Reference>
<Reference>
<Citation>Roth M, Hussain A, Cale JA, Erbilgin N. 2018. Successful colonization of lodgepole pine trees by mountain pine beetle increased monoterpene production and exhausted carbohydrate reserves. Journal of Chemical Ecology 44: 209-214.</Citation>
</Reference>
<Reference>
<Citation>Running SW. 2008. Ecosystem disturbance, carbon, and climate. Science 321: 652-653.</Citation>
</Reference>
<Reference>
<Citation>Ryan MG, Sapes G, Sala A, Hood SM. 2015. Tree physiology and bark beetles. New Phytologist 205: 955-957.</Citation>
</Reference>
<Reference>
<Citation>Scheller RM, Kretchun AM, Loudermilk EL, Hurteau MD, Weisberg PJ, Skinner C. 2018. Interactions among fuel management, species composition, bark beetles, and climate change and the potential effects on forests of the lake Tahoe Basin. Ecosystems 21: 643-656.</Citation>
</Reference>
<Reference>
<Citation>Schiebe C, Hammerbacher A, Birgersson G, Witzell J, Brodelius PE, Gershenzon J, Hansson BS, Krokene P, Schlyter F. 2012. Inducibility of chemical defenses in Norway spruce bark is correlated with unsuccessful mass attacks by the spruce bark beetle. Oecologia 170: 183-198.</Citation>
</Reference>
<Reference>
<Citation>Schroeder M, Lindelöw Å. 2003. Response of Ips typographus (Scolytidae: Coleoptera) and other bark- and wood-boring beetles to a flash-flood event. Scandinavian Journal of Forest Research 18: 218-224.</Citation>
</Reference>
<Reference>
<Citation>Seidl R, Fernandes PM, Fonseca TF, Gillet F, Jönsson AM, Merganičová K, Netherer S, Arpaci A, Bontemps J-D, Bugmann H et al. 2011. Modelling natural disturbances in forest ecosystems: a review. Ecological Modelling 222: 903-924.</Citation>
</Reference>
<Reference>
<Citation>Seidl R, Muller J, Hothorn T, Bassler C, Heurich M, Kautz M. 2016. Small beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle. Journal of Applied Ecology 53: 530-540.</Citation>
</Reference>
<Reference>
<Citation>Seidl R, Rammer W. 2017. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landscape Ecology 32: 1485-1498.</Citation>
</Reference>
<Reference>
<Citation>Senf C, Pflugmacher D, Zhiqiang Y, Sebald J, Knorn J, Neumann M, Hostert P, Seidl R. 2018. Canopy mortality has doubled in Europe's temperate forests over the last three decades. Nature Communications 9: 4978.</Citation>
</Reference>
<Reference>
<Citation>Sevanto S. 2018. Drought impacts on phloem transport. Current Opinion in Plant Biology 43: 76-81.</Citation>
</Reference>
<Reference>
<Citation>Simard M, Pinto N, Fisher JB, Baccini A. 2011. Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research: Biogeosciences 116: G04021.</Citation>
</Reference>
<Reference>
<Citation>Sun JH, Lu M, Gillette NE, Wingfield MJ. 2013. Red turpentine beetle: innocuous native becomes invasive tree killer in China. Annual Review of Entomology 58: 293-311.</Citation>
</Reference>
<Reference>
<Citation>Temperli C, Veblen TT, Hart SJ, Kulakowski D, Tepley AJ. 2015. Interactions among spruce beetle disturbance, climate change and forest dynamics captured by a forest landscape model. Ecosphere 6: art231.</Citation>
</Reference>
<Reference>
<Citation>Trumbore S, Brando P, Hartmann H. 2015. Forest health and global change. Science 349: 814-818.</Citation>
</Reference>
<Reference>
<Citation>Villari C, Faccoli M, Battisti A, Bonello P, Marini L. 2014. Testing phenotypic trade-offs in the chemical defence strategy of Scots pine under growth-limiting field conditions. Tree Physiology 34: 919-930.</Citation>
</Reference>
<Reference>
<Citation>Weber R, Gessler A, Hoch G. 2019. High carbon storage in carbon-limited trees. New Phytologist 222: 171-182.</Citation>
</Reference>
<Reference>
<Citation>Wiley E, Rogers BJ, Hodgkinson R, Landhäusser SM. 2016. Nonstructural carbohydrate dynamics of lodgepole pine dying from mountain pine beetle attack. New Phytologist 209: 550-562.</Citation>
</Reference>
<Reference>
<Citation>Zeneli G, Krokene P, Christiansen E, Krekling T, Gershenzon J. 2006. Methyl jasmonate treatment of mature Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica, a bark beetle-associated fungus. Tree Physiology 26: 977-988.</Citation>
</Reference>
<Reference>
<Citation>Zhao T, Kandasamy D, Krokene P, Chen J, Gershenzon J, Hammerbacher A. 2019. Fungal associates of the tree-killing bark beetle, Ips typographus, vary in virulence, ability to degrade conifer phenolics and influence bark beetle tunneling behavior. Fungal Ecology 38: 71-79.</Citation>
</Reference>
<Reference>
<Citation>Zhao T, Krokene P, Hu J, Christiansen E, Bjorklund N, Langstrom B, Solheim H, Borg-Karlson A-K. 2011. Induced terpene accumulation in Norway spruce inhibits bark beetle colonization in a dose-dependent manner. PLoS ONE 6: e26649.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Afrique du Sud</li>
<li>Allemagne</li>
<li>Autriche</li>
<li>Canada</li>
<li>États-Unis</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>District de Fribourg-en-Brisgau</li>
<li>Vienne (Autriche)</li>
</region>
<settlement>
<li>Fribourg-en-Brisgau</li>
<li>Vienne (Autriche)</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Huang, Jianbei" sort="Huang, Jianbei" uniqKey="Huang J" first="Jianbei" last="Huang">Jianbei Huang</name>
</noRegion>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<name sortKey="Hammerbacher, Almuth" sort="Hammerbacher, Almuth" uniqKey="Hammerbacher A" first="Almuth" last="Hammerbacher">Almuth Hammerbacher</name>
<name sortKey="Hartmann, Henrik" sort="Hartmann, Henrik" uniqKey="Hartmann H" first="Henrik" last="Hartmann">Henrik Hartmann</name>
<name sortKey="Kandasamy, Dineshkumar" sort="Kandasamy, Dineshkumar" uniqKey="Kandasamy D" first="Dineshkumar" last="Kandasamy">Dineshkumar Kandasamy</name>
<name sortKey="Kautz, Markus" sort="Kautz, Markus" uniqKey="Kautz M" first="Markus" last="Kautz">Markus Kautz</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Trowbridge, Amy M" sort="Trowbridge, Amy M" uniqKey="Trowbridge A" first="Amy M" last="Trowbridge">Amy M. Trowbridge</name>
</noRegion>
<name sortKey="Adams, Henry D" sort="Adams, Henry D" uniqKey="Adams H" first="Henry D" last="Adams">Henry D. Adams</name>
<name sortKey="Meddens, Arjan J H" sort="Meddens, Arjan J H" uniqKey="Meddens A" first="Arjan J H" last="Meddens">Arjan J H. Meddens</name>
<name sortKey="Raffa, Kenneth F" sort="Raffa, Kenneth F" uniqKey="Raffa K" first="Kenneth F" last="Raffa">Kenneth F. Raffa</name>
<name sortKey="Trowbridge, Amy M" sort="Trowbridge, Amy M" uniqKey="Trowbridge A" first="Amy M" last="Trowbridge">Amy M. Trowbridge</name>
<name sortKey="Xu, Chonggang" sort="Xu, Chonggang" uniqKey="Xu C" first="Chonggang" last="Xu">Chonggang Xu</name>
</country>
<country name="Afrique du Sud">
<noRegion>
<name sortKey="Hammerbacher, Almuth" sort="Hammerbacher, Almuth" uniqKey="Hammerbacher A" first="Almuth" last="Hammerbacher">Almuth Hammerbacher</name>
</noRegion>
</country>
<country name="Canada">
<noRegion>
<name sortKey="Goodsman, Devin W" sort="Goodsman, Devin W" uniqKey="Goodsman D" first="Devin W" last="Goodsman">Devin W. Goodsman</name>
</noRegion>
</country>
<country name="Autriche">
<region name="Vienne (Autriche)">
<name sortKey="Seidl, Rupert" sort="Seidl, Rupert" uniqKey="Seidl R" first="Rupert" last="Seidl">Rupert Seidl</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000003 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000003 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31494935
   |texte=   Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31494935" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020